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Abstract. A model of hybridized bosons and fermions is studied beyond the mean-field
approximation. The divergent boson self-energy at zero temperature makes the Cooper pairing
of fermions impossible. The frequency and momentum dependence of the self-energy and
the condensation temperatufe of initially localized bosons are calculated analytically. The
value of the boson condensation temperatiiyés belov 1 K and the long-wave spectrum is
strongly damped which rules out the boson—fermion model with the initially localized bosons as
a phenomenological explanation of high-temperature superconductivity. The intra-cell density—
density fermion—boson interaction dominates in the fermion self-energy. The model represents
a dirty normal metal, in which localized bosons play the role of impurities.

1. Introduction

Many superconducting and normal state properties of perovskites favour a charged 2e Bose
liquid of small bipolarons as a plausible microscopic model of their ground state [1]. In
particular, Bose-liquid features are clearly verified by théike specific heat near the
transition [2], the characteristic shape of the upper critical field [3], by the ‘boomerang’
behaviour ofT; and the London penetration depth with doping [4], explained recently [5].

In a multi-band system a mixture of bipolarons and electrons is feasible, with bipolarons
formed in a narrow band (the bandwid# « Eg) and almost free fermions, with a large
Fermi energyEg. If they interact with each other exclusively via the density—density
interaction the effect of fermions is that of screening the Coulomb boson-boson interaction.
Hence, an acoustic gapless plasmon mode is expected in the entire temperature regime
including the superfluid state while the fermionic component remains normal [6]. The
Bose—Einstein condensation temperature is expected to be about that of an ideal Bose gas.

On the other hand Friedberg and Lee [7], Ranninger and collaborators [8] and several
other authors [9] studied bosorg/bridized with fermions, a so-calledoson—fermion
model (BFM). The BFM has been motivated by the difficulty of accommodating a stable
mobile bosonic field because of the allegedly strong Coulomb repulsion. Then the
underlying mechanism for superconductivity has been assumed to be through the reaction
e+e— ¢ — e+ e involving avirtual 2e bosong. Because of this transition, it has
been claimed that ‘the zero momentum virtual bosons force the two e’s to have equal
and opposite momenta, forming a Cooper pair’ [7]. The studies carried out on BFM with
initially localized bosons also showed a superconducting ground state, ‘controlled by the
condensation of the bosons and a concomitantly driven BSC-like state of the fermionic
subsystem’ with the BCS-like gap in the electron spectrum [8]. It has been claimed [7-9]
that BFM gives the possibility of achieving large values of critical temperature.
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In this paper we study the boson—fermion model beyond the mean-field approach, applied
in [7-9], by taking into account the boson self-energy and the intra-cell density—density
repulsive interaction. We provide a rigorous proof that the Cooper pairing of fermions
is impossible at any value of the repulsion. The ground state of BFM is essentially the
same as that of the boson—fermion mixture with the normal fermionic component discussed
earlier by us [6]. The boson energy spectrum, damping and the density of states as well
as the condensation temperatdteare calculated. The intra-cell correlations dominate in
the fermion self-energy. The role of the hybridization interaction is shown to be negligible
both for T, and for the fermion damping.

2. No Cooper pairing

BFM is defined by the following Hamiltonian [7, 8]:

n v 4
H= Y &l cret Y oo@blbg+ —= > (blckg ek, +HO) @
k.s=1.) q \/ﬁ a.k

where & is the fermionic energy with respect to the chemical potenfigl wo(q) =
E; —2Er+q?/2M is the bare boson energy witfy the energy level of the doubly occupied
2e sites. The bare boson maks can be infinite for initially localized bosons [8]. The
boson—fermion hybridization interactian~ I'?/|U| is of second order with respect to the
single-electron interband hybridizatidh BFM is applied if the attractive on-site interaction
U < 0, responsible for the boson formation and the Fermi enéigywre large compared
with T, sov <« |U|, Eg. N is the number of sites (cells) in the normalized volume and
h = ¢ = 1. Here we do not discuss the attraction mechanism that would account for the
formation of bosons. Some discussion of the mechanisms can be found in [1, 8, 9].

In all real-life systems the Coulomb repulsion exidtg,> 0, which is fairly represented
by the Hamiltonian

T T T T
HC a N & k;; p [Ck+q,sck’fq,x’ck/vf/ckvs + 26k:+q,sck-5bk’fqbk’] (2)

which describes the intra-cell correlations. If we want to keep within the limits of this
particular BFM we shall také; = 0. However, the strong inequality; > v is normally
satisfied.

The criterion for Cooper-pair formation in a Fermi liquid lies in the existence of a
nontrivial solution to the linearized BCS equation [10]

A(p) = —/dp/V(p,p’)G(p’)G(—p/)A(p/)- 3)

Under this condition the two-particle vertex part, figur@)l(has a pole in the Cooper
channel. One can identifgx with the superconducting order parameter and the temperature
T, at which the nontrivial solution to (3) appears as the superconducting transition
temperature for fermionsy (p, p’) is defined in the sense that it cannot be divided into
two parts by cutting two parallel fermion propagat6iép); p = (k, iw,) is the momentum

and the fermionic Matsubara frequeney = #T7(2n + 1),n = 0,41, +2,..., so that
[dp’=TY", . Inthe leading order in the irreducible interactiorV (p, p’) is given by
figure 1p),

Vip,p") = l)—ZDo(O, 0+ 22 (4)
N N
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Figure 1. Two-particle vertex part forg) the Cooper channel and)( irreducible fermion—
fermion interaction.

where

1
Do(q, ) = (5)
° i, — wo(q)

is the bare boson temperature Green’s function wigty, = 27Tn. The physical (i.e.
renormalized) fermionG(k, w,) and bosonD(q, 2,) Green’s functions satisfy the sum
rule

2T : T :
N2 E€TD(g Q) = > €TG (K, w,) —ne (6)

N q.n k,n

which determines the chemical potentigt of the system. Here, is the carrier density
per cell andr = +0.
By the use of (4) and (5) the BCS equation is reduced to a simple form

T L /d’G NG(—p' @)
_<Na)o(0) N) p G(p)G(—p)

which can be readily solved by replacing the exact fermion propagator for the bare one,
G(p) ~ (iw, — &)~ L. Then the critical temperature is given by (fdg = 0)

wo(0) )
V2N (0)

T, ~ 1.14E¢ exp(— (8)

where N(0) ~ 1/Ef is the density of fermionic states. This is a mean-field result,
which led several authors [7-9] to the conclusion that BFM represents a high-temperature
superconductor ifog(0) is low enough. However, one has to recognize that the bare boson
energywo(0) has no physical meaning and hence the expression (8) is meaningless. On
the other hand the ‘physical’ (i.e. renormalized) zero-momentum boson eng@)yis

well defined. It should be positive or zero according to the sum rule, equation (6) in the
renormalized model:

@ (0) = wp(0) + ,(0.0) > 0. )
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Figure 2. (a) Boson Green’s function and) the lowest order ‘crossing’ diagram.

Here X,(q, 2,) is the boson self-energy given by figure 2 [11] as
U2 / /
Zp(q. Q) =——T > Gk +q.on+ )Gk, —op). (10)
N k' .n’'

This equation is almost exact. The sixth and higher orders fierossing diagrams’,
figure 2p) are as negligible as/Er « 1. It allows us to express the nonphysical bare
energywo(0) via the ‘physical’w(0) as

2
wo(0) = w(0) + %/dp/G(p/)G(—p/)- (11)
Then the BCS equation, equation (3) takes the following form:
(,!)(0) VC / / / /
=——[dp'G(p)G(-p). 12
0O+ WHN) [dp GpHG—py N J W IR (2)

It has no solution because(0) > 0 andV, > 0. Therefore we conclude that there is no
pairing of fermiong A = 0) in the boson—fermion model at any temperature in sharp contrast
to the mean-field result of [7-9]. This conclusion is exact because no assumptions have
been made as far as the fermion Green’s functiap) is concerned. In particular, taking
into account the fermion self-energy due to the hybridization interaatiam due to the
fermion—fermion and fermion—boson repulsion (see below) does not affect our conclusion.
One can erroneously believe that the renormalized boson propa@édd) rather than
the bare ondy(0.0) should be applied in the expression for the irreducible vevtéx, p’)
(figure 1p), equation (4)), in which case the physical zero-momentum ene(gy would
appear in the expression f@y, equation (8). This is incorrect because repladipgor D in
the Cooper channel, figured)( leads to alouble countingof the hybridization interaction.
The same Cooperon diagram is responsible for the boson self-energy, figirdr2¢ther
words the bare bosons only contribute to the Cooper channel. They are never condensed
(wo(0) > 0O for any value ofv) and, therefore cannot induce the superconducting state of
the fermionic subsystem. From a pedagogical point of view it is interesting to note that
a similar double-countingproblem appears in the calculation of the response function of
condensed charged bosons. As has been discussed in [12] one should use the free-particle
propagator rather than the renormalized one to derive the textbook expression [13] for the
boson dielectric response function.
The authors of [7-9] applying the mean-field approach failed to recognize the divergence
of the boson self-energy at zero temperature. It diverges logarithmically, so the bare
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boson energy is infinite at zero temperature and the pairing interaetiof\(0) /wo(0)) is

zero. The divergent boson self-energy fully compensates the divergent Cooperon diagram.
Friedberg and Lee [7] discussed the self-energy effect, missing, however, the Fermi-
distribution function in their out-of-place expression for the boson self-energy, which does

not respect the Pauli principle (equation (1.15) of their paper). As a result, they failed to

notice the ‘infrared’ collapse of their theory.

3. Condensation of strongly damped bosons

While the fermionic subsystem remains normal at any temperature the bosons can be
condensed at some finite temperatdte If their bare massM is sufficiently low, T;
is given by the ideal Bose-gas formula [6],
123
Teo ~ 3.3-B 13
c0 Maz ( )

whereng = (ne —ng)/2 is the boson density per cetlr is the fermion density and is the

lattice constant. With their computer calculations of the boson damping Ranmingje 1]

argue that the initiallylocalized bosons withM = oo change over into free-particle-like
propagating states as the temperature is lowered. However, since the mean-field arguments
are incorrect and the numerical results are restricted by a fingpace and temperature
region the conclusion on the possibility of the superfluidity in BFM with= oo is far

from evident.

In this section we suggest the analytical calculation of the boson self-energy and show
that the long-wave bosonic excitations are strongly damped. Their condensation is possible
at very low temperatureq 1 K) in the localized rather than propagating state.

The condensation temperatufgis given by the sum rule, equation (6) @t0) = 0

T Z eiQ,,r B
N 479+ 5,(0.0) — By(q. Q)

By the use of the analytical properties of the boson self-energy the sum on the left-hand
side is replaced by an integral as

= pR) _
/0 expie) To) — 1dz =ng (15)
where

v(q,2)

1
_ 1 16
P 7N Xq: [z —w(g. 2)]?+ r%(q.2) (16)

is the boson density of states. In the leading ordev ione can use the bare fermionic
propagator in (10) to calculatg,(q, 2,) as

v2 < tanh&,/27T) + tanhég4/27)
(g, Q) = —— _ . 17
(@ ) N; Bk + Errq — 19 4

The analytical continuation to real frequencies is then

qux> [In Ix —1—z/qvFl n 2}
AT; Ix +1—2z/quel  x

w(q,z2) =NTp(q, z) — Xp(0,0) = %f dxtanh(
(18)
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for the real part, and

(19)

T, (COSl’(z + qu/4Tc)>

,2) =3%,(q,2) =mze——1In
v(q, z) »(q, 2) Sqoe " \ cosiz — gvr /4T,

for the damping. Here. = v2N(0) and vr is the Fermi velocity. By the use of these
equations we obtain the following asymptotic behaviour of the boson energy and of the
damping in the long-wave « g. = 4T./vr and low energy: < gug limit:

2

o~ 20
w(q) = 51 (20)
TTZ¢c
>~z 21
v =g (21)
where the inverse bosonic ‘mass’ is determined by

1 2 & 1

— LelF (22)

M+~ 6n2T2 & (2n — 1)3°

Substitution of these expressions into (16) yields the square root asymptotic behaviour of
the boson density of states at low energies- 0

p(z) ~z (23)

which makes the integral in (15) convergent and the condensation possible. However, the
damping in this long-wave region is large. On the mass surfacav(q) we find
v _ Tic
w(q) 8T,
becausel, < z; as we show below. Therefore the long-wave spectrum (equation (20)) as
well as the bosonic mas¥* due to hybridization have no physical meaning, and a finite
T does not signal the occurrence of superfluidity.
The strongly damped part of the spectrum has a negligible weight in the total number of
bosonic states due to a very small valugggtompared with the reciprocal lattice constant,
gc < 1/a. The inequalityg > qc is fulfilled practically in the whole Brillouin zone. In
this case by the use of (18) and (19) we find

(24)

w(@) ~zn L (25)
qdc
and
77:ZC
=z . 26
Y = 0 (26)

In this region the damping is smajt/w(g) <« 1, and the energy spectrum, equation (25) is
well defined. Itis practically dispersionless, so the boson density of states is well represented
by the §-function

p(2) = 8(z —zo) . (27)
Now the critical temperature is readily obtained from (15) by the use of (27) as
v2N (0
= YNO (28)
In(1+ 1/ng)

The condensation itself does not lead to superfluidity. Because of the damping,
equation (21), the spectrum cannot be described with the momentum, and the bosons
condense into a localized state rather than the extended one. We can compare
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Te, equation (28) with the Bose—Einstein condensation temperdigreequation (13),
determined with the finite bare boson mags~ |U|/ W?a?. Takingng ~ 1 one obtains

T _ r4
Teo B EF|U|W2

because in any realistic cafe< W. As an example, if one believes [8, 9] that localized
bipolarons in YBCO are associated with the Cu—-O chains and mobile single-particle states
are associated with the Cu—O planes, the hydridization matrix elefestproportional

to the chain—plane overlap integral and is clearly of the same order or even less than the
intra-chain hopping integral{ W). As far as the polaronic reduction of the bandwidth

is concerned, by the use of the displacement canonical transformation and the Holstein
model [1] one can readily show that the reduction factor is precisely the same for both the
bare bipolaronic band (the bandwidthl/Ma?) and for the hybridized one (the bandwidth

of the order ofv?/Eg). Moreover, for intersite bipolarons and dispersive phonons the
polaron orthogonality blocking of the (bi)polaron tunnelling is less significant than in the
Holstein model as discussed recently by us [5]. At the same time the hybridization matrix
elementl’ remains suppressed to the same extent as in the dispersionless Holstein model
[14]. Therefore, in general the orthogonality blocking (phonon overlap) reduces the ratio
Tc/ To even further. As a result, the relative value of the critical temperature of the
(localized) boson—fermion model is small. The absolute value is very low as well. By
taking Er ~ |[U| ~ 1 eV andI" < 0.1 eV one estimate§, ~ I'(I'/E(|UJ%) < 1 K.

This estimate and the strong damping of the long-wave part of the spectrum rule out BFM
as an explanation of high-temperature superconductivity. The effect of hybridization on
the Bose—Einstein condensation appears to be negligible. As we show below the effect of
hybridization on the normal state fermion spectra is negligible as well.

<1 (29)

4. Fermion self-energy

The effect of hybridization on the normal state fermion spectrum in the BFM with initially
localized bosons was discussed by several authors (see, for example, [15]). It was shown
that the hybridization leads to a one-particle self-energy equivalent of the one of the marginal
Fermi liquid. If the temperature is abog ~ 1 K the fermion self—energwﬁ(k, w,) due

to hybridization is described well by the following expression (see figure 3) [11]

0 v? 1
Sk o) = =T >

- - . 30
2 liwn + o) — 0O [0y — & (30)

In this temperature range the finite boson bandwidth and the damping can be neglected
while the use of the renormalized zero momentum boson ene(@y > 0 rather than

wo(0) prohibits the violation of the sum rule, equation (6). The sum over frequencies is
expressed as

v2 Z coth(w(0)/2T) — tanh(& /2T)

h —_
Xy (k, o) = N iw, — w(0) + & ' D

k/
Continued to the real frequencies this expression yields the following result for the imaginary
part:

w(0) w(0) — z:| . (32)
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I=RN

Figure 3. Hybridization contribution to the fermion self-energy.

Then the fermion lifetime due to hybridization is expressed using the sum rule as
ng(1+ng)

1+ 2ng —tanh(z/2T) "

If the temperaturd’ « (0) and the fermion is far away from the Fermi surfagex( w (0))

the lifetime is

which is the Fermi golden rule for spontaneous transitions to the empty local pair states.
At the Fermi surfacez(= 0) the lifetime is proportional to the boson density

ng(1+ng)
1+ 2ng

because the fermion needs some energy to annihilate.

We compare the hybridization lifetime, equation (35) with the damping due to boson
density fluctuations coupled with the fermion density, equation (2). As far as the direct
repulsion between fermions is concerned (the first term in (2)), its contribution is negligible
near the Fermi surface ¥, < Eg, which is assumed here. The corresponding leading
contribution fromH; to the fermion self-energy is then presented in figure 4 and expressed
as

(33)

82;’(1) = 4 zc

%ZJ’} =4z (35)

2
E}(k, U)n) — 4VC T i Hb(qs Qn’) (36)
N qn I(a)n - Qn/) - Ek—q
where
1 cothw(q' + q)/2T) — coth(w(q')/2T)
My(g, ) = 1 > (37)

q iQn —O)(Q‘i‘ql)‘f‘w((I)

is the boson response function. There is only static response in the Mmit co of
initially localized bosons, so that

1
My(q. 2,) = Magn,o. (38)
Substituting this expression into (36) we finally obtain
%6(z) = isign(z)4m VZN (O)ng (1 + ng) . (39)

Figure 4. Fluctuation contribution to the fermion self-energy.
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The ratio of two lifetimes at the Fermi surface is given by
32} B v2

- 40
3B VAL + 2np) (40)

which is about 10* for the appropriate values af and V.
It appears that the boson density fluctuations lead to an attractive interaction between
two fermions, figure 5, so that the total pairing potential is now

v? Ve 4V?
Vip,p)=———— + —— —Sng 8,00/ - 41
(p,p) Neo(0) + N NT”B( +ng)du,.w, (41)
The BCS equation takes the following form:
A(w,y A(w,
Alwy) = —wrTey |g" I) + 47 V2N (O)ng(1 + ng) |(f" ) (42)

n'

where , = w, + sign(wn)4nVC2N(0)nB(1 + ng) is the damped Ma'Esubara frequency,
A = v2N(0)/wo(0) and . = VN (0). Introducing a new order parametaras

47 V2N (O)ng(l+ ng)]

IC’Z)I'[ I

A= A(wy) |:1 - (43)

we obtain the same BCS equation, equation (7) as in the absence of any density fluctuations

A=G-pwrTe) (44)

n

[ | .

In this particular BFM it only has the trivial solutiom = 0 becausé. — 0 whenT — 0,

as explained above. As a result the density fluctuations of the bosonic field have no effect
on T, which is a textbook result [10]. They play the same role in the BFM as the normal
impurities in superconductors with no effect on the critical temperature in accordance with
the Anderson theorem.

~_

PN

Figure 5. Effective attraction of fermions via boson density fluctuations.

5. Conclusion

Our study of the boson—fermion model beyond the mean-field approximation has shown that
this approximation, which predicts a BCS-like fermionic superconductivity, is qualitatively
wrong. The Cooper pairing of fermions due to their hybridization with the bosonic band is
not possible. The long-wave bosons are strongly damped and their condensation temperature
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is determined by the bare bosonic mass rather than by hybridization. The fermion self-energy
due to the density—density coupling with bosons is larger by several orders of magnitude
than that due to hybridization. BFM with initially localized bosons appears to be a normal
dirty metal where bosons play the role of normal impurities.

Our results have a direct bearing upon the general problem of high-temperature
superconductivity via the exchange interaction. In sharp contrast with the mean-field
approach [7-9] the exact treatment of the boson—fermion model leads to the conclusion
that this model cannot provide a high value ®f Boson—fermion hybridization plays no
role either in theT, value or in the fermion self-energy, which are determined by the bare
effective mass of bosons and by the density—density fermion-boson coupling, respectively.
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